Lifetime Improvement of NAND Flash-based Storage Systems Using Dynamic Program and Erase Scaling

FAST’14
Contents

• Lifetime Issues
• Motivations
• Key Components of DPES
• Implementation of DPES-aware FTL
• Experiments and Conclusions
NAND Device Trend

- NAND storage capacity is increasing
 - Semiconductor process scales to 10nm
- Erase-before-program property
 - Repeated P/Es make NAND cell wear down
 - NAND device provides limited number of P/E cycles
- Thin paper (highly scaled device) wears down more easily
 - NAND lifetime (endurance, P/E cycle) becomes a main barrier
Directions to Improve Lifetime

\[L_c = \frac{\text{MAX}_{P/E} \times C}{\text{W}_{\text{day}} \times \text{WAF}} \]

- Lifetime (in days) of NAND device, \(L_c \)
 - (+) Maximum number of P/E cycles, \(\text{MAX}_{P/E} \)
 - (+) Total capacity, \(C \)
 - (-) Total written data, \(\text{W}_{\text{day}} \)
 - (-) Write amplification factor, \(\text{WAF} \)
- Reducing WAF (by increasing FTL efficiency)
- Reducing \(\text{W}_{\text{day}} \) (by deduplication, compression)
- Increasing \(\text{MAX}_{P/E} \) (by self-recovery)
- DPES tries to increase \(\text{MAX}_{P/E} \)
Motivations: Device Physics

1. Using softer eraser (using low erase voltage)
 - Paper wears down slowly
 - NAND cells wears out slowly
 - Device endurance (lifetime) can be improved

2. Erasing carefully (increasing erase time)
 - Same effect as using soft eraser
Overview of DPES

DPES (Dynamic Program and Erase Scaling) approach:

- Erase Voltage Scaling
 - Endurance vs. Erase Voltage
- Erase Time Scaling
 - Endurance vs. Erase Time
- Program Time Scaling
 - Erase Voltage vs. Program Time

Dynamically changes program and erase voltage/time

Improves the NAND endurance w/o degradation in the overall write throughput

- (1) Erase voltage scaling (using soft eraser)
- (2) Erase time scaling (erasing carefully)
- (3) Program time scaling (for resolving the side-effect of erase voltage scaling)
- DPES dynamically changes (1)~(3) at runtime
Erase Voltage Scaling

• **BER over different P/E cycles under varying erase voltage**
 – r=0 (nominal vol.), r=0.07 (7% reduced vol.), r=0.14 (14% reduce~)
 – Bit Error Rate (BER) decreases when erase voltage reduced

• New metric: **effective wearing (per P/E), EW**
 – Normalized BER after 3K P/E cycles using nominal voltage

• **Effective wearing over different erase voltage scaling**
 – EW near-linearly decreases as voltage decreases
 – 14% erase voltage reduction → 54% increase of EW
• 2-bit MLC uses four distinguished **threshold voltage levels**
 – Four stages are distinguished by **reference voltages**
 – **Write** injects electrons to floating gate by the corresponding threshold voltage level
 – **Read** checks the current threshold voltage level
• Incremental step pulse programming (ISPP) for write
 – Gradually increases write voltage by V_{ISPP} and checks it
 – # of ISPP loops determines write time (T_{prog})
 – V_{ISPP} determines # of ISPP
• Width of threshold voltage distribution
 – Fixed in the design/manufacture time
 – If large, VISPP can be bigger
 – If small, VISPP should be small
• Small VISPP value (fine-grained control)
 – Increases # of ISPP loop
 – Increases write time
Side Effect of Erase Voltage

- Decrease in erase voltage for minimizing effective wearing
- Decrease in threshold voltage window (shallowly erased)
- Narrow distribution of remaining 3 threshold voltage state
- Fine-grained write is required for shallowly erased block
- **Write time will increase** for those blocks
Trade off: Erase Voltage &

- 5 different voltage erase mode
 - Evmode(0) – nominal erase (deep/full/normal erase)
 - Evmode(4) – weakest ease (most shallow erase)
- **Write time** depends on *how much shallowly erased*
 - Program time scaling is needed for erase voltage scaling
- Corresponding write mode (different write time) provided
 - Wmode(0) – nominal write, Wmode(4) takes twice more time
Erase Time Scaling

- As erase time increases, effective wearing decreases
 - 300% increased erase time reduces EW by 19%
- In addition to low voltage erase, slow erase further increases the endurance
- Two modes (ESmode\text{fast} and ESmodeslow) are supported
Endurance Model for DPES

- For improving endurance (decreasing effective wearing)
 - Five erase voltage mode (erase voltage scaling)
 - Two erase time mode (erase time scaling)
- For shallowly erased blocks,
 - Five program time mode (program time scaling)
- DPES dynamically adjust voltage and time mode to minimize effective wearing (improving lifetime) without write time loss
Overview of DPES-enabled FTL (autoFTL)

- **Mode selector** determines write/erase modes
- **Per-Block Mode Table** groups blocks by five erased levels
- **Device Settings** (write, erase, reference voltage) configured
Write/Erase Mode Selection Flow

Write Request
- Circular Buffer
 - Utilization
 - Mode Selector
 - Wmode (i)
 - EVmode (j)
 - ESmode (k)
 - NAND Setting Table
 - DeviceSettings
 - NAND Flash Memory

Write Request
- Select Wmode (i)
- GC is needed?
 - no
 - Select EVmode (j)
 - Select ESmode (k)
 - Erase (j, k)
 - Write (i)
 - no
Write Mode Selection

- Write requests queued into buffer before service
- Buffer utilization (how much the buffer is filled)
 - High utilization \rightarrow intensive writes \rightarrow fast write
 - Low utilization \rightarrow idle time between writes \rightarrow slow write
- Utilization < 20
 - Wmode4 is set (if current write mode is different)
 - Write request in the head of buffer is programmed
Erase Voltage/Time Mod

- Note that erase is making free space for future writes
- Voltage erase should consider future write patterns
 - If too many blocks erased with Evmode(4)
 - If future writes are intensive
 - Write time is delayed (using only Wmode(4) is possible)
- When a write, (if no GC), set Wmode and program
- When a write, (if GC), it estimates future buffer utilization, set the Evmode, and erase victim blocks
Experimental Setup

- NAND configuration
 - 8 channels * 4 chips/channel = 32 chips
- Write buffer size
 - 32MB = 8KB page * 4096 write requests
- 6 enterprise traces
 - Based on inter-arrival time ratio, the effectiveness of DPES varies
Endurance Gain

- On average, 69% endurance increased by DPES
- Src1_2 shows less endurance gain
 - It has a large amount of small inter-arrival time requests
 - Writes with EVmode0 are many
- Prxy_0 shows the largest endurance gain
 - Majority writes use EVmode4
Conclusions

• Device physics
 – Erase with low voltage → endurance improved
 – Slow erase → endurance improved
 – Side effect: erase with low voltage → program time scaling

• DPES (Dynamic Program and Erase Scaling)
 – 5 erase voltage/program time mode, 2 erase time mode
 – Endurance model used

• DPES enabled FTL
 – Write time mode selection based on inter-arrival time
 – Erase voltage/time mode selection based on guessing future write inter-arrival time