
Neither More Nor Less: Optimizing
Thread-level Parallelism for GPGPUs

Onur Kayıran, Adwait Jog, Mahmut Kandemir, Chita R. Das

GPU Computing

2

 GPUs are known for providing high thread-level parallelism
(TLP).

Core

Uni-processors

Core Core

Core Core

Multi-cores

...

...

Many-cores, GPUs

3

“Too much of anything is bad,

but too much good whiskey is barely enough”

 - Mark Twain

Executive Summary
 Current state-of-the-art thread-block schedulers

make use of the maximum available TLP

 More threads → more memory requests

 Contention in memory sub-system

 Improves average application performance by 28%

4

Proposal:
A thread-block scheduling algorithm

Optimizes TLP and reduces memory sub-system
contention

Outline
 Proposal

 Background

 Motivation

 DYNCTA

 Evaluation

 Conclusions

5

GPU Architecture

6

DRAM

SIMT Cores

Warp Scheduler

ALUs L1 Caches

Threads

W W W W W W

Warps

L2 cache

Interconnect

CTA CTA CTA CTA

Cooperative

Thread

Arrays

(CTAs)

C
T
A

S
c
h

e
d

u
le

r

Warp Scheduler

GPU Scheduling

7

Warp Scheduler

CTA CTA CTA CTA

Warp Scheduler

CTA Scheduler CTA Scheduler

Warp Scheduler

P
ip

e
li

n
e

P
ip

e
li
n

e

W W W W W W W W

CTA CTA

Properties of CTAs
 Threads within a CTA

synchronize using barriers.

 There is no synchronization
across threads belonging to
different CTAs.

 CTAs can be distributed to
cores in any order.

 Once assigned to a core, a CTA
cannot be preempted.

8

Threads

CTA

barrier

Properties of CTAs
 The number of CTAs executing on a core is limited

by:

 the number of threads per CTA

 the amount of shared memory per core

 the number of registers per core

 a hard limit (depends on CUDA version for NVIDIA GPUs)

 the resources required by the application kernel

 These factors in turn limit the available TLP on the core.

 By default, if available, a core executes maximum number
of CTAs.

9

Outline
 Proposal

 Background

 Motivation

 DYNCTA

 Evaluation

 Conclusions

10

Effect of TLP on GPGPU Performance

11

3.3 4.9 1.9

2.4

3.5 4.9 3.0 2.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

li
ze

d
 I

P
C

Minimum TLP Optimal TLP

19%

39% potential improvement

Effect of TLP on GPGPU Performance

12

3.3 4.9 1.9
2.4

3.5 4.9 3.0 2.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

li
ze

d
 I

P
C

Minimum TLP Optimal TLP

0

0.2

0.4

0.6

0.8

1

A
ct

iv
e

T
im

e

R
a
ti

o
 (

R
A

C
T

)

16%

51%

95% potential improvement

Why is not more TLP always optimal?

13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

AES

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

AES

IPC

lat.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

MM

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

MM

IPC

lat.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

JPEG

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

JPEG

IPC

lat.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

CP

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e

Number of CTAs per core

CP

IPC

lat.

Why is not more TLP always optimal?

 More threads result in
larger working data set

 Causes cache contention

 More L1 misses cause
more network
injections

 Network latency
increases

14

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4
N

o
rm

al
iz

e
d

 V
al

u
e

Number of CTAs per core

BP

L1 data miss
rate

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4
N

o
rm

al
iz

e
d

 V
al

u
e

Number of CTAs per core

BP

L1 data miss
rate

Network lat.

Outline
 Proposal

 Background

 Motivation

 DYNCTA

 Evaluation

 Conclusions

15

DYNCTA Approach

 Execute the optimal number of CTAs for each application

 Requires exhaustive analysis for each application, thus
inapplicable

16

Idea:
Dynamically modulate the number
of CTAs on each core using the CTA

scheduler

DYNCTA Approach

 Objective 1: keep the cores busy

 If a core has nothing to execute, give more threads to it

 Objective 2: do not keep the cores TOO BUSY

 If the memory sub-system is congested due to high number
of threads, lower TLP to reduce contention

 If the memory sub-system is not congested, increase TLP to
improve latency tolerance

17

DYNCTA Approach
 Objective 1: keep the cores busy

 Monitor C_idle, the number of cycles during which a core
does not have anything to execute

 If it is high, increase the number of CTAs executing on the
core

 Objective 2: do not keep the cores TOO BUSY

 Monitor C_mem, the number of cycles during which a core
is waiting for the data to come back from memory

 If it is low, increase the number of CTAs executing on the
core

 If it is high, decrease the number of CTAs executing on the
core

 18

DYNCTA Overview

19

L H

H M L
C_mem

C_idle

Increase
of CTAs

Decrease
of CTAs

No
change in
of CTAs

CTA Pausing

20

Warps of the most recently assigned CTA are deprioritized
in the warp scheduler

Once assigned to a core, a CTA cannot be preempted!

Then, how to decrement the number of CTAs ?

PAUSE

Outline
 Proposal

 Background

 Motivation

 DYNCTA

 Evaluation

 Conclusions

21

Evaluation Methodology
 Evaluated on GPGPU-Sim, a cycle accurate GPU simulator

 Baseline Architecture

 30 SIMT cores, 8 memory controllers, crossbar connected

 1300MHz, SIMT Width = 8, Max. 1024 threads/core

 32 KB L1 data cache, 8 KB Texture and Constant Caches

 GDDR3 800MHz

 Applications Considered (in total 31) from:

 Map Reduce Applications

 Rodinia – Heterogeneous Applications

 Parboil – Throughput Computing Focused Applications

 NVIDIA CUDA SDK – GPGPU Applications

22

Dynamism

23

0

2

4

6

8

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
TA

s

Time

Average Number of CTAs Default
number of
CTAs

Optimal
number of
CTAs

0

0.2

0.4

0.6

0.8

1

A
ct

iv
e

 T
im

e
 R

at
io

Time

Active Time Ratio

Dynamism

24

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
TA

s

Time

Average Number of CTAs Default
number of
CTAs

Optimal
number of
CTAs

0

0.2

0.4

0.6

0.8

1

A
ct

iv
e

 T
im

e
 R

at
io

Time

Active Time Ratio

Average Number of CTAs

25

0

2

4

6

8

A
v

er
a
g

e
N

u
m

b
er

 o
f

C
T

A
s/

co
re

Default DYNCTA Optimal TLP 5.4

0

2

4

6

8

A
v

er
a
g

e
N

u
m

b
er

 o
f

C
T

A
s/

co
re

Default DYNCTA Optimal TLP

2.9

0

2

4

6

8

A
v

er
a
g

e
N

u
m

b
er

 o
f

C
T

A
s/

co
re

Default DYNCTA Optimal TLP

2.7

IPC

26

3.5 4.9 3.0 2.4

0.8

1

1.2

1.4

1.6

N
o

rm
a

li
ze

d
 I

P
C

TL DYNCTA Optimal TLP

39%

3.3
3.5 4.9 3.0 2.4

0.8

1

1.2

1.4

1.6

N
o

rm
a

li
ze

d
 I

P
C

TL DYNCTA Optimal TLP

13% 3.3

3.6 2.9 2.9

1.9
3.5 4.9 3.0 2.4

0.8

1

1.2

1.4

1.6

N
o

rm
a

li
ze

d
 I

P
C

TL DYNCTA Optimal TLP 28%

Outline
 Proposal

 Background

 Motivation

 DYNCTA

 Evaluation

 Conclusions

27

Conclusions

 Maximizing TLP is not always optimal in terms of
performance

 We propose a CTA scheduling algorithm, DYNCTA, that
optimizes TLP at the cores based on application
characteristics

 DYNCTA reduces cache, network and memory contention

 DYNCTA improves average application performance by 28%

28

THANKS!

QUESTIONS?

29

BACKUP

30

Utilization

31

C
o

re
 1

Idle
CTA 1

CTA 3
CTA 5

CTA 7

C
o

re
 2

CTA 2

CTA 4

CTA 6
CTA 8

CTA 1

CTA 3

CTA 4

CTA 6

CTA 5

CTA 7 CTA 2

CTA 8

Id
le

C
o

re
 1

C

o
re

 2

Initial n
 All cores are initialized with ⌊N/2⌋ CTAs.

 Starting with 1 CTAs and ⌊N/2⌋ CTAs usually converge to the
same value.

 Starting with the default number of CTAs might not be as
effective

32

Comparison against optimal CTA count
 Optimal number of CTAs might be different for different

intervals for applications that exhibit compute- and memory-
intensive behaviors at different intervals

 Our algorithm outperforms optimal number of CTAs in some
applications

33

Parameters
Variable Description Value

Nact Active time, where cores can fetch new warps

Ninact Inactive time, where cores cannot fetch new
warps

RACT Active time ratio, Nact/(Nact + Ninact)

C_idle The number of core cycles during which the
pipeline
is not stalled, but there are no threads to
execute

C_mem The number of core cycles during which all the
warps
are waiting for their data to come back

t_idle Threshold that determines whether
C_idle is low or high

16

t_mem_l & t_mem_h Thresholds that determine if C_mem is low,
medium or high

128 & 384

Sampling period The number of cycles to make a modulation
decision

2048

34

Round Trip Fetch Latency

35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
li

ze
d

 L
a
te

n
cy

Round Trip Fetch Latency

0.67

Other Metrics

 L1 data miss rate: 71% → 64%

 Network latency: ↓ 33%

 Active time ratio: ↑ 14%

36

Sensitivity
  Large system with 56 and 110 cores: around 20%

performance improvement

 MSHR size: 64 – 32 – 16: 0.3% and 0.6% performance loss

 DRAM frequency: 1333 MHz: 1% performance loss

 Sampling period 2048 – 4096: 0.1% performance loss

 Thresholds: 50% - 150% of the default values: losses between
0.7% - 1.6%

37

