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GPU Computing 
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 GPUs are known for providing high thread-level parallelism 
(TLP). 
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“Too much of anything is bad,  

but too much good whiskey is barely enough” 

       

    

      - Mark Twain 



Executive Summary 
 Current state-of-the-art thread-block schedulers 

make use of the maximum available TLP 

 More threads → more memory requests 

 Contention in memory sub-system 

 

 

 

 

 

 Improves average application performance by 28% 
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Proposal: 
A thread-block scheduling algorithm  

Optimizes TLP and reduces memory sub-system 
contention 
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GPU Architecture 
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Warp Scheduler 

GPU Scheduling 
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Properties of CTAs 
 Threads within a CTA 

synchronize using barriers. 

 There is no synchronization 
across threads belonging to 
different CTAs. 

 

 

 CTAs can be distributed to 
cores in any order. 

 Once assigned to a core, a CTA 
cannot be preempted.  
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Threads 

CTA 
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Properties of CTAs 
 The number of CTAs executing on a core is limited 

by: 

 the number of threads per CTA 

 the amount of shared memory per core 

 the number of registers per core 

 a hard limit (depends on CUDA version for NVIDIA GPUs) 

 the resources required by the application kernel 

 

 These factors in turn limit the available TLP on the core. 

 

 By default, if available, a core executes maximum number 
of CTAs. 
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Effect of TLP on GPGPU Performance 
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Why is not more TLP always optimal?  
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Why is not more TLP always optimal?  

 More threads result in 
larger working data set 

 Causes cache contention 

 More L1 misses cause 
more network 
injections 

 Network latency 
increases 
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DYNCTA Approach 
 

 Execute the optimal number of CTAs for each application 

 

 Requires exhaustive analysis for each application, thus 
inapplicable 
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Idea: 
Dynamically modulate the number 
of CTAs on each core using the CTA 

scheduler 
 



DYNCTA Approach 
 

 Objective 1: keep the cores busy 

 If  a core has nothing to execute, give more threads to it 

 

 Objective 2: do not keep the cores TOO BUSY 

 If the memory sub-system is congested due to high number 
of threads, lower TLP to reduce contention 

 If the memory sub-system is not congested, increase TLP to 
improve latency tolerance 
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DYNCTA Approach 
 Objective 1: keep the cores busy 

 Monitor C_idle, the number of cycles during which a core 
does not have anything to execute 

 If it is high, increase the number of CTAs executing on the 
core 

 

 Objective 2: do not keep the cores TOO BUSY 

 Monitor C_mem, the number of cycles during which a core 
is waiting for the data to come back from memory 

 If it is low, increase the number of CTAs executing on the 
core 

 If it is high, decrease the number of CTAs executing on the 
core 
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DYNCTA Overview 

19 

L H 

H M L 
C_mem 

C_idle 

Increase 
# of CTAs 

Decrease 
# of CTAs 

No 
change in 
# of CTAs 



CTA Pausing 
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Warps of the most recently assigned CTA are deprioritized  
in the warp scheduler 

Once assigned to a core, a CTA cannot be preempted!  

Then, how to decrement the number of CTAs ?   

PAUSE 
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Evaluation Methodology 
 Evaluated on GPGPU-Sim, a cycle accurate GPU simulator 

 

 Baseline Architecture 

 30 SIMT cores, 8 memory controllers, crossbar connected 

 1300MHz, SIMT Width = 8, Max. 1024 threads/core 

 32 KB L1 data cache, 8 KB Texture and Constant Caches 

 GDDR3 800MHz 

 

 Applications Considered (in total 31) from: 

 Map Reduce Applications 

 Rodinia – Heterogeneous Applications 

 Parboil  – Throughput Computing Focused Applications 

 NVIDIA CUDA SDK – GPGPU Applications 
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Conclusions 
 

 Maximizing TLP is not always optimal in terms of 
performance 

 

 We propose a CTA scheduling algorithm, DYNCTA, that 
optimizes TLP at the cores based on application 
characteristics 

 

 DYNCTA reduces cache, network and memory contention 

 

 DYNCTA improves average application performance by 28% 
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THANKS! 
 
 
QUESTIONS? 
 
 
 

29 



BACKUP 
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Utilization 
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Initial n 
 All cores are initialized with ⌊N/2⌋ CTAs. 

 

 Starting with 1 CTAs and ⌊N/2⌋ CTAs usually converge to the 
same value. 

 

 Starting with the default number of CTAs might not be as 
effective 
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Comparison against optimal CTA count 
 Optimal number of CTAs might be different for different 

intervals for applications that exhibit compute- and memory- 
intensive behaviors at different intervals 

 

 Our algorithm outperforms optimal number of CTAs in some 
applications 
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Parameters 
Variable Description Value 

Nact Active time, where cores can fetch new warps 

Ninact Inactive time, where cores cannot fetch new 
warps 

RACT Active time ratio, Nact/(Nact + Ninact) 

C_idle The number of core cycles during which the 
pipeline 
is not stalled, but there are no threads to 
execute 

C_mem The number of core cycles during which all the 
warps 
are waiting for their data to come back 

t_idle Threshold that determines whether 
C_idle is low or high 

16 

t_mem_l & t_mem_h Thresholds that determine if C_mem is low, 
medium or high 

128 & 384 

Sampling period The number of cycles to make a modulation 
decision 

2048 
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Round Trip Fetch Latency  
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Other Metrics 
 

 L1 data miss rate: 71% → 64% 

 

 Network latency: ↓ 33% 

 

 Active time ratio: ↑ 14% 
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Sensitivity 
  Large system with 56 and 110 cores: around 20% 

performance improvement 

 

 MSHR size: 64 – 32 – 16: 0.3% and 0.6% performance loss 

 

 DRAM frequency: 1333 MHz: 1% performance loss 

 

 Sampling period 2048 – 4096: 0.1% performance loss 

 

 Thresholds: 50% - 150% of the default values: losses between 
0.7% - 1.6% 
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