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GPU Computing 
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 GPUs are known for providing high thread-level parallelism 
(TLP). 
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“Too much of anything is bad,  

but too much good whiskey is barely enough” 

       

    

      - Mark Twain 



Executive Summary 
 Current state-of-the-art thread-block schedulers 

make use of the maximum available TLP 

 More threads → more memory requests 

 Contention in memory sub-system 

 

 

 

 

 

 Improves average application performance by 28% 
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Proposal: 
A thread-block scheduling algorithm  

Optimizes TLP and reduces memory sub-system 
contention 
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GPU Architecture 
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Warp Scheduler 

GPU Scheduling 

7 
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Properties of CTAs 
 Threads within a CTA 

synchronize using barriers. 

 There is no synchronization 
across threads belonging to 
different CTAs. 

 

 

 CTAs can be distributed to 
cores in any order. 

 Once assigned to a core, a CTA 
cannot be preempted.  
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Properties of CTAs 
 The number of CTAs executing on a core is limited 

by: 

 the number of threads per CTA 

 the amount of shared memory per core 

 the number of registers per core 

 a hard limit (depends on CUDA version for NVIDIA GPUs) 

 the resources required by the application kernel 

 

 These factors in turn limit the available TLP on the core. 

 

 By default, if available, a core executes maximum number 
of CTAs. 
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Effect of TLP on GPGPU Performance 
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Effect of TLP on GPGPU Performance 
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Why is not more TLP always optimal?  

13 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

AES 

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

AES 

IPC

lat.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

MM 

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

MM 

IPC

lat.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

JPEG 

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

JPEG 

IPC

lat.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

CP 

IPC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

N
o

rm
al

iz
e

d
 V

al
u

e
 

Number of CTAs per core 

CP 

IPC

lat.



Why is not more TLP always optimal?  

 More threads result in 
larger working data set 

 Causes cache contention 

 More L1 misses cause 
more network 
injections 

 Network latency 
increases 
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DYNCTA Approach 
 

 Execute the optimal number of CTAs for each application 

 

 Requires exhaustive analysis for each application, thus 
inapplicable 
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Idea: 
Dynamically modulate the number 
of CTAs on each core using the CTA 

scheduler 
 



DYNCTA Approach 
 

 Objective 1: keep the cores busy 

 If  a core has nothing to execute, give more threads to it 

 

 Objective 2: do not keep the cores TOO BUSY 

 If the memory sub-system is congested due to high number 
of threads, lower TLP to reduce contention 

 If the memory sub-system is not congested, increase TLP to 
improve latency tolerance 
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DYNCTA Approach 
 Objective 1: keep the cores busy 

 Monitor C_idle, the number of cycles during which a core 
does not have anything to execute 

 If it is high, increase the number of CTAs executing on the 
core 

 

 Objective 2: do not keep the cores TOO BUSY 

 Monitor C_mem, the number of cycles during which a core 
is waiting for the data to come back from memory 

 If it is low, increase the number of CTAs executing on the 
core 

 If it is high, decrease the number of CTAs executing on the 
core 
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DYNCTA Overview 
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CTA Pausing 
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Warps of the most recently assigned CTA are deprioritized  
in the warp scheduler 

Once assigned to a core, a CTA cannot be preempted!  

Then, how to decrement the number of CTAs ?   

PAUSE 
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Evaluation Methodology 
 Evaluated on GPGPU-Sim, a cycle accurate GPU simulator 

 

 Baseline Architecture 

 30 SIMT cores, 8 memory controllers, crossbar connected 

 1300MHz, SIMT Width = 8, Max. 1024 threads/core 

 32 KB L1 data cache, 8 KB Texture and Constant Caches 

 GDDR3 800MHz 

 

 Applications Considered (in total 31) from: 

 Map Reduce Applications 

 Rodinia – Heterogeneous Applications 

 Parboil  – Throughput Computing Focused Applications 

 NVIDIA CUDA SDK – GPGPU Applications 
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IPC 
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Conclusions 
 

 Maximizing TLP is not always optimal in terms of 
performance 

 

 We propose a CTA scheduling algorithm, DYNCTA, that 
optimizes TLP at the cores based on application 
characteristics 

 

 DYNCTA reduces cache, network and memory contention 

 

 DYNCTA improves average application performance by 28% 
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THANKS! 
 
 
QUESTIONS? 
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BACKUP 
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Utilization 
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Initial n 
 All cores are initialized with ⌊N/2⌋ CTAs. 

 

 Starting with 1 CTAs and ⌊N/2⌋ CTAs usually converge to the 
same value. 

 

 Starting with the default number of CTAs might not be as 
effective 

 

32 



Comparison against optimal CTA count 
 Optimal number of CTAs might be different for different 

intervals for applications that exhibit compute- and memory- 
intensive behaviors at different intervals 

 

 Our algorithm outperforms optimal number of CTAs in some 
applications 
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Parameters 
Variable Description Value 

Nact Active time, where cores can fetch new warps 

Ninact Inactive time, where cores cannot fetch new 
warps 

RACT Active time ratio, Nact/(Nact + Ninact) 

C_idle The number of core cycles during which the 
pipeline 
is not stalled, but there are no threads to 
execute 

C_mem The number of core cycles during which all the 
warps 
are waiting for their data to come back 

t_idle Threshold that determines whether 
C_idle is low or high 

16 

t_mem_l & t_mem_h Thresholds that determine if C_mem is low, 
medium or high 

128 & 384 

Sampling period The number of cycles to make a modulation 
decision 

2048 
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Round Trip Fetch Latency  
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Other Metrics 
 

 L1 data miss rate: 71% → 64% 

 

 Network latency: ↓ 33% 

 

 Active time ratio: ↑ 14% 
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Sensitivity 
  Large system with 56 and 110 cores: around 20% 

performance improvement 

 

 MSHR size: 64 – 32 – 16: 0.3% and 0.6% performance loss 

 

 DRAM frequency: 1333 MHz: 1% performance loss 

 

 Sampling period 2048 – 4096: 0.1% performance loss 

 

 Thresholds: 50% - 150% of the default values: losses between 
0.7% - 1.6% 
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