

Spin-Transfer Torque Switching in Magnetic Tunnel Junctions and Spin-Transfer Torque Random Access Memory

Zhitao Diao and Others Grandis Incorporated, CA, USA

Published In: Journal of Physics - 2007

Motivation

□ Spin Transfer Torque - Magnetoresistive Random Access Memory (STT-MRAM) stores data using a Magnetic Tunnel Junction (MTJ)

Motivation

STT-MRAM is considered as a potential "Universal Memory"

	SRAM	DRAM	STT-MRAM
Cell Area [F ²]	50-120	6-10	6-20
Volatility	Volatile	Volatile	Non-Volatile (Default)
Endurance	10 ¹⁶	10 ¹⁶	10 ¹⁵
Read Time [ns]	1ns	15ns	2-20ns
Write/Erase Time [ns]	3ns	8ns	20ns
Read Energy	Low	Low	Low
Write Energy	Low	Low	High

STT-MRAM Write Operation

Critical Current (I_{c0}) or Critical Current Density (J_{c0}):

The minimum current required to make the MTJ free layer instable enough to cause a switching of its magnetic orientation

- Deciding factor in write energy consumption
- Dependent on temperature

MTJ Switching Techniques

1. Thermal Activation:

- If the temperature remains unchanged during the switching process, the switching probabilities are exactly the same
- With two different temperatures during the switching process, the probability is strikingly different even with the same initial conditions

J = 0.75J_{CO} Switching Pulse Width > 100 ns

1.0

MTJ Switching Techniques

- **2. Precessional Process:**
- Polarizer sends RF signal to assist switching
- the magnetization switching is mainly dependent on the initial thermal distribution

MTJ Switching Techniques

 $J = 1.25 J_{co}$

Dynamic Reversal: 3.

Dynamic reversal is a combination of Precessional and Thermally activated switching.

The magnetization reversal is determined both by the initial thermal distribution and the thermal agitation during the switching process.

Summary

Switching Technique	Switching Current (J)	Switching Pulse Width (ns)
Thermal Activated Switching	0.75 J _{co}	> 100 ns
Precessional Switching	5 J _{co}	0.25 ns
Dynamic Reversal Switching	1.25 J _{co}	4 – 6 ns

- Authors conclude that the Dynamic Reversal Technique provides the optimum performance.
- Based on possible future development of Precessional Switching, it can give us SRAM like writing latency for STT-MRAM, without relaxation techniques

Thank you ____ Questions?