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Abstract—Non-Volatile Memory Express (NVMe) is designed
with the goal of unlocking the potential of low-latency, random-
access, memory-based storage devices. Specifically, NVMe em-
ploys various rich communication and queuing mechanism that
can ideally schedule four billion I/O instructions for a single
storage device. To explore NVMe with assorted user scenarios,
we model diverse interface-level design parameters such as PCI
Express, NVMe protocol, and different rich queuing mechanisms
by considering a wide spectrum of host-level system configura-
tions. In this work, we also assemble a comprehensive memory
stack with different types of emerging NVM technologies, which
can give us detailed NVMe related statistics like I/O request
lifespans and I/O thread-related parallelism.

Our evaluation results reveal that, i) while NVMe handshaking
is light-weight for flash memory that uses block-based accesses
(Block NVM), it can impose tremendous overheads for memristor
technology (DRAM-like NVM), ii) in contrast to the common
expectation, the performance of an NVMe-equipped system may
not improve in a scalable fashion as the queue depth and
the number of queues increase, and iii) more- and deeper-
queue systems atop a Block NVM can significantly suffer from
tremendous host-side memory requirements, whereas a DRAM-
like NVM can cause frequent system stalls due to NVMe’s
inefficient interrupt service routine.

I. INTRODUCTION

In the past decade, non-volatile memories (NVMs) have
come into the spotlight as a major component of storage sys-
tems in various domains ranging from embedded or personal
computing to high-performance computing [1], [2], [3], [4],
[5], [6]. However, the bandwidth of NVMs by far exceeds
that of conventional storage interfaces, due to the significant
architectural and technological changes they went through
recently [7], [8]. To address the performance disparity between
NVMs and storage interfaces, the storage community has
improved existing storage interfaces by enabling much higher
data transfer rates. For example, the current version of SATA
3.0 [9] and SAS 3.0 [10] interfaces improved the bandwidth
by four times compared to their first generations. However, in
the meantime, the bandwidth of NVMs has been improved
by 152 times, which clearly far exceeds the performance
capability of such high speed storage interfaces [11], [12],
[13]. Instead of continuing to revise such storage interfaces,
one of the promising solutions to accommodate the high
bandwidth capacity brought by modern NVMs is to employ a
high-speed system memory bus such as PCI Express (PCIe)
[14], [15], [16], [17], [18].
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Fig. 1: A high-level view of NVMe. Based on system con-
figuration and user/application demand, the number of queues
and queue depth can be scaled.

NVM Express (NVMe) is a brand new interface designed
from scratch with the goal of exploiting the potential of high-
performance NVMs and standardizing the PCIe-based memory
interfaces [19], [20]. NVMe is expected to significantly im-
prove random and sequential I/O accesses by reducing inter-
face latency [21]. Furthermore, it gives better communication
flexibility to both the host and NVMs in not only scheduling
I/O requests [22] but also buffering data by removing an
unnecessary handshaking process [23]. Figure 1 illustrates a
high-level view of the NVMe interface. The NVMe inter-
face can maximize parallelism across multiple host-internal
resources by supporting a rich queuing mechanism, which
allows an NVMe driver to enqueue 64K (=216) commands.
Based on this rich queuing mechanism, the host can secure
up to 64K queues, each employing 64K entries. In practice,
the number of these host-side queues initiated depends on a
wide spectrum of system configurations and user demands.
As shown in the figure, different processor cores in the host
can employ different number of submission/completion queues
in an attempt to avoid locking, hide NVM access penalties,
or handle different NVM data structures and I/O services.
Thanks to this NVM-specific design, NVMe can accommodate
conventional flash memory (imposing block granularity) as
well as different types of memristor technologies that use byte-
access granularity such as phase change RAM (PCM) [24],
[25].

While NVMe promises to enable high levels of I/O par-
allelism and serve streaming services with extremely large
queues, so far these design parameters have not been studied
in detail. Furthermore, it is unclear what kind of system
considerations and limitations need to be taken into account



when designing a new memory interface, storage stack, and
controller based on the NVMe specification. This lack of in-
formation on NVMe makes it challenging for not only system
designers but also hardware architects to employ NVMe as
their new storage interface. As NVMe is defined across host-
side system modules and storage-side NVM controllers, the
overall system performance highly depends on how systems
can take advantage of this next generation interface’s unique
characteristics. Unfortunately, it is not trivial to explore a large
number of design choices configured by 4 billion queue entries
with various user scenarios.

In this paper, we propose NVMeSim, a novel NVMe an-
alytical simulation tool that models numerous interface-level
design parameters such as PCIe/NVMe commands sets, proto-
cols, host interface controllers, and rich queuing mechanisms.
To explore the full design space, our NVMeSim also supports
the corresponding storage stack as well as different types
of NVMs, which can capture not only the lifespan of an
I/O request but also its performance. Using this simulation
framework, one can investigate both host-level and interface-
level design tradeoffs, including different bus speeds, varying
access granularities (i.e., DRAM-like NVM accesses [26] vs.
block-based NVM accesses), queue utilization, and I/O thread-
related parallelism.

The main contributions of this work can be summarized
as follows:

• Interface protocol overheads. The state-of-the-art NVMe
1.2 [20] is designed to minimize handshaking and register
writes, thereby enabling streamlined communication without
major protocol overheads. Specifically, NVMe needs to write
the device-side doorbell registers only two times, which can
reduce register accesses of the conventional storage interface
protocol [14], [9], [10] by 78%. However, as NVMe is
designed to handle a “storage” device over the PCIe electric
connection, it still requires extra communication packets to
control the payload data movement [14]. These overheads in-
troduce a different set of handshaking problems, which prevent
NVMe from achieving a fully-streamlined communication.
In this work, we study the details of the communication
overheads imposed by NVMe, considering the underlying
NVM technology employed in the system.

• Queue handling issues. The conventional storage interfaces
only offer a single queue with a few entries (e.g., 32 entries),
and this queue is in practice shared by all processor cores on
the host side. These shared and limited queue entries introduce
two main challenges: i) poor device-level resource utilization
and ii) performance degradation caused by physical link
contention and thread-level I/O synchronization. To address
these shortcomings, NVMe provides 64K queues, each capable
of queuing 64K incoming I/O requests. In this work, we
investigate critical hardware resources and queue management
challenges in supporting these rich queueing capabilities of
NVMe with varying I/O accesses, threads/cores, queue sizes,
and number of queues.
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Fig. 2: A typical NVMe interface configuration.

II. NON-VOLATILE MEMORY EXPRESS

Memory Stack Architecture. Since NVMe is a bus com-
munication protocol between the host and NVM, its memory
stack resides on both the sides. Figure 2 shows the overall
architecture of an NVMe-based storage system. In the figure,
there exist three components integrated in an NVMe-based I/O
system: i) host, ii) NVM device, and iii) PCIe bus. The host
executes multiple I/O threads, whereas the NVM can employ
different types of storage media such as flash memory and
memristor memory, referred to as Block NVM and DRAM-like
NVM, respectively, in this paper. Physical PCIe bus plays the
role of a communication path between the host and NVM by
bridging the both ends. While the host-side NVMe logic can
be implemented as a kernel driver, device-level NVMe system
parameters such as doorbell registers should be managed by
the underlying NVMe controller. The host-side NVMe driver
creates important NVMe structures such as submission queue
(SQ) and completion queue (CQ) in the host memory, which
are typically managed in pairs and come in multiple pairs.
This queue pair (SQ-CQ) can be initiated per-core, per-task,
or per-thread basis; in this paper, we allocate a separate queue
pair for each I/O thread. The SQ enqueues the incoming I/O
requests, whereas the corresponding CQ accommodates the
completion messages brought by the NVMe controller. In this
architecture, all I/O requests generated by a running thread
should be inserted into the SQ and wait for service. These
requests are pulled by the NVMe controller, which allows the
storage system decide the order of I/O executions without any
significant CPU intervention. Once the NVM device completes
an I/O request, a completion message is inserted into the
associated CQ. A packet-based interrupt triggered by the
NVMe controller then finalizes the completed I/O request(s),
and the host-side NVMe driver releases the corresponding
resources managed by multiple SQs and CQs at the host side.
Communication Protocol. Figure 2b shows an example NVM
handshaking protocol between the host and NVM for reads
and writes. This communication protocol can be divided into
seven sub-steps as follows. When a new I/O request is inserted
into the SQ, the driver rings the doorbell (DB) of the NVMe
controller by writing into the DB register (DB-Write ¶). Once
the presence of new I/O requests is conveyed to the underlying
NVM, the NVMe controller asks the host to fetch these
requests (IO-Req ·). The driver then sends the corresponding



information to the controller (IO-Fetch ¸). Note that the
arrival of new I/O requests at the NVM is not triggered by
the I/O submission of the host-side threads, but by the request
from the NVM-side controller, which makes the NVM I/O
scheduling highly efficient and well balanced. The target data
are transferred from the host to the underlying NVM controller
via DMA (WR-DMA or RD-DMA ¹). If the request type
is “read”, the corresponding DMA is initiated after NVM-
processing (NVM-Proc º). Once the request is processed
by the NVM, the corresponding completion message, called
CPL is sent to the host-side driver and inserted into the
target CQ (CPL-Submit Ï). At this point, the host does not
know the completion of the I/O request, and therefore, the
controller triggers an interrupt to notify the driver that there
is a completed I/O request (MSI Ð). This message-signalled
interrupt (MSI), initiates an interrupt service routine (ISR),
and then the target request can be finalized by the host-side
ISR, which subsequently releases the relevant system resources
such as queue entries and buffers. It should be noted that the
information such as DB-write, I/O-req, IO-Fetch, CPL-Submit
and MSI are also packetized and consume PCIe interface
bandwidth, in addition to the DMA for the actual data packets.
PCIe Bus and Packet-Based Data Transfer. While NVMe
specifies a communication protocol and a rich queue mecha-
nism for emerging NVMs, its physical communication charac-
teristics as well as data movements are dictated by PCIe [14].
This physical PCIe connection, referred to as a link, consists
of at least one lane and can integrate up to 32 lanes. PCIe
also defines the bandwidth of a single link, which increases
depending on the number of lanes employed. We summarize
the important link characteristics by considering different PCIe
bus versions in Table I. All types of data are transferred over
PCIe bus in the form of packets. In particular, there are two
types of packets supported by PCIe: i) Transaction Layer
Packet (TLP) and ii) Data Link Layer Packet (DLLP). A TLP
can contain any message by utilizing its payload position field.
Since the maximum PCIe payload size is 4KB, to transfer
a chunk of data larger than 4KB, it needs to form multiple
TLPs. In contrast, both the NVM and host send and receive
DLLPs to manage the status of the bus without any user
intervention. For example, DLLPs are utilized as ACK/NAK
to send TLPs and notification of the destination buffer status
to the source end. Note that all NVMe information described
above and I/O data (via DMA) should transfer over the bus in
the form of PCIe packets [14]. Even though PCIe is a scalable
interface offering extremely high bandwidth (up to 60GB/s
per direction), we note that multiple data (packets) cannot be
transferred in parallel by using multiple lanes; instead, a data
transfer should use all the lanes until its completion.

III. THE NVME MODEL

Since there is no publicly-available tool to characterize
NVMe under a wide variety of storage settings, we developed
an analytical simulation model, called NVMeSim. NVMeSim
accommodates four different models: I/O request, PCIe bus,
host system, and NVM SSD models. Particularly, the I/O

Version Ver 2 Ver 3 Ver 4

Bandwidth
/lane 500MB/s 1GB/s 2GB/s

# of lanes x1, x2, x4, x8, x16, x32

TABLE I: PCIe configu-
rations for different ver-
sions.

NVMe information (TLP) PCIe
(DLLP)

Data
(TLP)

DB-
Write

I/O-
Req

I/O-
Fetch

CPL-
Submit MSI ACK DMA

24B 24B 20B 20B 20B 8B 4KB

TABLE II: NVMe communica-
tion components and their packet
sizes.

request model and PCIe bus model are constructed in detail
based on the NVMe specification [20] and the PCIe datasheets
[15], respectively.
I/O Request Model. As illustrated in Figure 2, in order to
get serviced, an I/O request should go through a handshaking
that involves NVMe information. To extract each component
of the NVMe communication protocol, the latencies of reads
and writes are modeled based on the NVMe specification and
the time taken for the handshaking, which are given below by
Equations (1) and (2), respectively :

TReadI/O = TDB−Write + TI/O−Req + TI/O−Fetch

+ TRD−NV M + TRD−DMA

+ TCPL−Submit + TMSI + TStall

(1)

TWriteI/O = TDB−Write + TI/O−Req + TI/O−Fetch

+ TWR−DMA + TWR−NV M

+ TCPL−Submit + TMSI + TStall

(2)

where TDB−Write, TI/O−Req , TI/O−Fetch, TCPL−Submit,
and TMSI are the times taken to process the communication
between the host and the NVM device based on NVMe
protocol. TRD−NVM and TWR−NVM are the response times
of the underlying NVM, whereas TRD−DMA and TWR−DMA

are the corresponding latency values for the DMA service.
Finally, TStall indicates the delay for the NVMe information
to wait for the bus service; this delay can increase as the queue
depth increases. While this I/O request model can capture
detailed NVMe handshaking, the communication overheads
can be expressed using Equation (3). The magnitude of these
overheads can vary, depending on their contribution to the
whole I/O latency, by comparing TOverhead with the NVM
response time (TRD−SSD or TWR−SSD) and DMA latency
(TRD−DMA or TWR−DMA).

TOverhead = TDB−Write + TI/O−Req + TI/O−Fetch

+ TCPL−Submit + TMSI + TStall
(3)

Specifically, the latency taken by an NVMe communication
is determined by its information packet size as well as the
PCIe bus data rate. The NVMe information moves over the
PCIe bus in the form of TLP, which is also defined in the
PCIe specification. The size of each type of packet is given in
Table II.
PCIe Bus Model. Depending on the PCIe version and the
number of lanes, the bandwidth of the selected bus configura-
tion can significantly vary, which can in turn impact the NVMe
performance significantly. Note that I/O data (DMA) and
NVMe information associated with each I/O request contend



to utilize a single bus in the form of packets. Since the PCIe
bus is allowed to transfer one packet at a time (per direction),
all types of packets that belong to the large number of I/O
requests across multiple queues should wait for the bus service
to get to the other side (the host or the NVM).
Host System Model. Among a wide range of resources and
components in the host, the I/O queues and I/O finalization
latency are accurately modeled in NVMeSim. This model can
accommodate 65536 queues, and each queue depth can also
vary up to 65536, as indicated by the NVMe specification
[20]. In addition, the host memory utilization is also calculated
based on the number of queues and the sum of the sizes of all
generated I/Os. Finally, this host system model also monitors
the finalization of all I/O requests in the system.
NVM Model. As two different types of memory access
granularities impose totally different NVM performance char-
acteristics, we model a block-addressable NVM (e.g., flash)
and a byte-addressable NVM (e.g., PCM and STT-MRAM
[27]) technologies, referred to as block NVM and DRAM-like
NVM, respectively. For the block-based NVM, we model one
of the most common NAND flash memories in the market
[28], which on average reads and writes a 4KB page in
30us and 200us, respectively. In contrast, the response time
of DRAM-like NVM is borrowed from the timing values of
PCM memory [24], read and write latency values which are
set for a 64B page, to 50ns and 1us, respectively. While we
picked up these specific values for NVMs, our simulator is
highly reconfigurable and can cover a broad range of NVM
characteristics.

IV. EVALUATION

While our NVMeSim features a broad range of system de-
sign parameters, in this work, we mainly focused on evaluating
the NVMe protocol and uncovering the true characteristics
of NVMe. To this end, we composed micro-benchmarks that
differentiate the I/O request sizes [29] and submission rates
based on the type of NVM that the host employs (Block NVM
vs. DRAM-like NVM). Specifically, various block access
patterns (4KB to 2MB) are generated for block-based NVM,
whereas the DRAM-like NVM utilizes byte-access patterns
whose sizes range from 8B to 1024B. In addition, the I/O
submission rate is carefully modelled in our evaluation as it
captures how often the host system generates an I/O request.
In reality, this significantly varies depending on not only the
system software but also other parameters such as memory
space and working-set size. However, to quantitatively evaluate
the performance of NVMe protocol, in this paper, we set the
I/O submission interval to 10us and 100ns for Block NVM
and DRAM-like NVM, respectively, which are reasonable time
intervals using which such NVM storage media can serve each
request without a device-level scheduling delay.

A. Communication Overhead Analysis

In this section, we answer a critical question: how much
overhead is brought up by the NVMe protocol for different
types of NVMs in processing an I/O request? We break down
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Fig. 3: The latency ratio comparison between the NVMe
overheads and other data.
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(a) DRAM-like RD breakdown.
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(b) DRAM-like WR breakdown.

Fig. 4: The breakdown of the DRAM-like NVM execution for
64B read(RD)/write(WR).

the total latency of an I/O request into the NVMe commu-
nication overhead (indicated by NVMeInfo hereafter) and the
other latencies (related to the DMA and NVM-processing).
To accurately capture the contribution of each NVMe protocol
component, we set the queue depth to one, so that only a single
I/O request is triggered into the NVM without being disturbed
by other requests.
Block NVM storage + NVMe. Figure 3a plots the latency
breakdown of 4KB read and write I/O requests for Block
NVM. One can observe from this figure that the NVMe
communication is streamlined (as promoted), which sets our
Block NVM free from the handshaking process and imposes
no overhead. Specifically, NVMeInfo for reads and writes only
accounts for 0.15% and 0.03% of the total execution latency,
respectively, irrespective of which PCIe version is used and
how many lanes are employed. This is because the long latency
values of Block NVM make the time to transfer the NVMe-
generated packets negligible. We note that TLPs used for
NVMe communication (listed in Table II) are at most tens
of bytes that take a hundred nano-seconds on a PCIe bus. The
DMA also takes a small portion of the execution due to the
high-speed bus, and this is further reduced by improving the
PCIe performance.
DRAM-like NVM storage + NVMe. In contrast to the
Block NVM evaluation, the NVMeInfo overhead can be very
high in a DRAM-like NVM. Figure 3b shows the execution
breakdown for the DRAM-like NVM with the V2x1 PCIe
interface (i.e., Version 2 with 1 lane) – we observe that,
for most popular PCIe configurations (v2x1 ∼ v2x16), the
decomposition patterns are similar to each other. One can also
see from this figure that the NVMeInfo packets for reads and
writes take, on average, 44% and 4% of the total execution
time, respectively. This difference in the latency contributions
makes the NVMe overhead look bigger in DRAM-like NVM.
To extract more detailed information, we further decompose
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Fig. 5: Overhead analysis for NVMe interrupt handling.

the 64B read and write executions, which are shown in
Figures 4a and 4b, respectively. As shown in these figures,
while NVMe is oriented towards reducing the communication
overhead, the actual I/O services contend with many packets
related by NVMeInfo. Specifically, DB-Write, IO-Fetch, IO-
Req, CPL-Submit and MSI packets collectively account, on
average, for 64% and 39% of the actual data movement (DMA)
and NVM itself, respectively. In addition, we also observe that
the small DMA size can be a burden on the popular PCIe
configuration (v2x4∼16). Fortunately, as the version of the
employed bus increases, this overhead can be hidden, which
well explains the current trend of employing PCIe interfaces
with very high data rates in NVMe. However, as the number of
I/O requests increases (as a result of deep queues or DRAM-
like small I/O size), the aggregate of these small overheads
would be more significant, which can be a problem even in
future PCIe buses.
NVMe ISR Overhead. MSI is capable of reducing the com-
munication overhead between the host and NVM as it requires
only a few nanoseconds in most modern systems. However,
frequent MSI arrivals can impose a long CPU intervention on
the host. To better understand the NVMe interrupt overhead,
we explain how the host handles MSI in Figure 5b. If MSI is
detected, the CPU depacketizes it (¶) and invokes the ISR (·).
The target CQ and new entries therein are then determined via
the MSI vector. When multiple queues are associated with the
asserted MSI vector, the host driver will scan those queues
(¸), which would be a critical bottleneck of NVMe ISR. To
perform this scan, the host updates the MSI mask table related
to the current interrupt (¹), and then schedules a deferred
procedure call (DPC) to process the completed requests (º).
Once DPC is triggered (»), the driver processes the new
completion entries as well as the associated submission entries,
and finally unmasks the interrupt (¼).

Figure 5a shows the number of ISR invocations under vary-
ing numbers of I/O threads for both Block NVM storage and
DRAM-like NVM storage. As each thread has its own SQ and
CQ, we use the terms “threads” and “queues” interchangeably
when no confusion occurs. While we evaluated different inter-
arrival times varying from 2us to 10us and from 20ns to
100ns for DRAM-like NVM storage and Block NVM storage,
respectively, for the sake of brevity, in the figure we only show
the maximum and minimum values for each configuration.
One can observe from this figure that ISRs are invoked too
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Fig. 6: Throughput values with varying queue depths.
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Fig. 7: Latency values with varying queue depths.

frequently when increasing the number of threads (queues) till
32. As NVMe supports 65536 queues, this ISR overhead may
not be acceptable in modern systems and will be a serious
issue for future NVM technologies. There is a consensus
among our observations and the prior works such as [30]
and [18]. It should be noted that, for each ISR handling, the
host NVMe driver should appropriately handle the entry of
CQ and the corresponding one in SQ, and also manage the
data memory related to such entries. Thus, the complexities
of interrupt handler can increase as the inter-arrival times are
shorten, which is the reason why the ISR overheads go up
with signalling in the figure.

B. Towards More and Deeper Queues

NVMe is designed to support plenty of large queues, which
can increase up to 216queues × 216entries = 232requests,
depending on the user and system requirements. A critical
question regarding this rich queue system is whether just
increasing the queue sizes will be sufficient to deliver scalable
performance. Specifically, Is there any need to provide up to
four billion requests? Is it possible to continuously extract ad-
ditional performance improvements, as the number of queues
and queue entries increases? To answer these questions, in this
section, we mainly quantify the relationship between NVMe
and PCIe, and examine the limits of NVMe’s rich queue
mechanism by utilizing ideal NVM models, which do not have
a bandwidth limitation, but capture all relevant NVM latencies.
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Fig. 8: Throughput comparison with varying numbers of
threads (queues).

Deep-Queue. Figures 6a and 6b plot the performance of
NVMe v2 (x16 lanes) with different request sizes in the case of
block NVM and DRAM-like NVM, respectively. Even though
NVMe can offer a very large number of queue entries, one
can see that the throughput values for both Block NVM and
DRAM-like NVM saturate, for any I/O size, before the queue
depth reaches 65536. This result indicates that, simply working
with a very large queue may not necessarily improve the I/O
system performance in a scalable fashion. We also evaluate
this saturation issue with a wide variety of PCIe configurations.
Figure 9a shows the saturation points for each version of PCIe
on all the NVM devices we tested. As shown in the figure,
700 is the sufficient depth to support a Block NVM, whereas
the throughput of DRAM-like NVM saturates with a very
low queue depth (10), irrespective of which PCIe interface
is employed. We believe that this is because the NVMeInfo
overhead and DMA are a big burden on the DRAM-like NVM.

Regardless of the throughput saturation, users can fill the
entire queue with I/O requests. However, this severely hurts
the latencies for both Block NVM and DRAM-like NVM, as
can be seen in Figure 7. One can observe from the plots in
this figure that, as the queue size increases, the average I/O
latency significantly degrades. This is because more and more
I/O requests allowed by the deeper queue stall without getting
any bus service, once the bandwidth of the given PCIe bus
runs out. Because of this, even though NVMe can support
65536 queue entries, after the throughput saturates due to the
exhaustion of bus bandwidth, any further increase in queue
depth is not recommended, to avoid the latency degradation
problem.
Many-Queue. We observed that, as the number of threads
increases, the NVM throughput can, in general, improve up to
the maximum bandwidth capacity of the given PCIe. Figures
8a and 8b plot the NVMe performance with varying number of
threads (and queues) in the case of Block NVM and DRAM-
like NVM, respectively. As shown in Figure 8a, the Block
NVM can address the bus underutilization issue observed
in the previous deep-queue evaluations when increasing the
number of queues (32 threads at most). This is because
more threads generating small I/O requests are allowed to run
concurrently under the block NVM. However, the throughput
brought by the DRAM-like NVM by doubling the number
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Fig. 9: Saturation point analysis.

of threads is far less than the PCIe bus bandwidth capacity,
as illustrated in Figure 8b. Unlike Block NVM, in this case,
the reason why the saturated throughput is lower than the
theoretical PCIe bandwidth is the significant contribution of
the NVMeInfo overhead.

We note that, while the increased number of I/O requests
that comes with multiple queues is likely to maximize the
utilization of the major I/O system resources, not all work-
loads require 65536 queues. Figure 9b shows the performance
saturation points with different thread counts. The performance
of the Block NVM saturates with 32 threads, even with the
high-speed next generation NVMe (V4) with the maximum
lanes (32). On the other hand, unlike the expectation that more
threads would be allowed and beneficial for the DRAM-like
NVM, at most 16 threads perform the best in the majority of
the cases. Lastly, we also observe that that, similar to the deep-
queue analysis, continuously increasing the number of threads
can significantly hurt the average I/O latency. When the thread
count goes beyond the number of threads that saturate the
throughput, the latency rapidly degrades, since the saturation
point means that the bandwidth of the given PCIe bus has
already run out.

V. CONCLUSIONS

In this work, we proposed a novel NVMe model imple-
mented in a new simulation platform (NVMeSim), and ex-
plored the full design space of NVMe. Even though NVMe is
designed towards minimizing handshaking and register writes,
we observed its door-bell based I/O management introduces
a different set of communication overheads and handshaking
problems. We also investigated critical hardware resources
and queue management challenges to support NVMe’s rich
queue mechanism. To our knowledge, NVMeSim is the first
framework using which a large variety of NVMe parameters
and characteristics can be studied.
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